Nuclear Energy

Nuclear Energy University Programs (NEUP) Fiscal Year (FY) 2016 Annual Planning Webinar

IRP-FC-2: Cask Mis-Loads Evaluation Techniques

JC de la Garza

NEUP Federal Point of Contact Office of Nuclear Energy U.S. Department of Energy

August 2015

Introduction

- Many types and designs of spent nuclear fuel casks and containers currently in storage
- Inventory of spent fuel in these casks/containers is large and with varying burn-up rates and out-of-reactor times and they have multiple internal components
- Long-term internal stability of the internals and spent fuel and its cladding is important to maintain sub-criticality
- The challenge is to assess the condition of the internals and the spent nuclear fuel non-intrusively during the Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC)
- This topic addresses the development of innovative technologies to determine and catalogue the extent of any damage or degradation of internal components during transport that includes NCT and possibly HAC

Background

- Non-destructive examination techniques currently in use or new innovative techniques where surface damage and in some cases volumetric assessments can be performed on a reasonable scale on concrete or metal components
- Technology limited with layered and inaccessible components with different materials and varying gaps between the layers
- Needed are fundamental technologies to discern the condition of the internals of a spent fuel storage cask/container (baskets and assemblies) during NCT and HAC that are specified in the NRC transportation regulations (10CFR71) with a high degree of reliability
- Prior work focused on static applications after prolonged storage while this work focuses on dynamic applications during transport

■Objective

■ New technology/technologies to support the design of simplified tools that can be used for assessing, cataloguing, sorting and isolating any operationally degraded casks/canisters during transport

- ■Work to be Performed
- Innovative methodology development
- Proof of principle evaluation
- Identify and quantify inherent uncertainties
- Develop and implement a "mock-up" test program
- Prepare a detailed final report

■Tasks to be Performed

- Task 1: Development of an integrated plan describing the technology development and testing at 3 5 months
- Task 2: Methodology development at 9 months
- Task 3: Proof of principle testing and uncertainty evaluation at 15 18 months
- Task 4: Develop and implement "mock-up" tests at 26 32 months
- Task 5: Analysis of test results and benchmarking of model at 33 40 months
- Task 6: Complete project report at 48 months

■ Deliverables

- Technology assessment report 24 months after beginning of performance period
- Final project report 48 months after beginning of performance period